
PHYSICAL REVIEW E MARCH 1998VOLUME 57, NUMBER 3
Structure of the three-point correlation function of a passive scalar
in the presence of a mean gradient

Alain Pumir
Institut Nonlinéaire de Nice, CNRS, 1361 route des Lucioles, F-06560 Valbonne, France

~Received 1 October 1997!

The three-point correlation function of a passive scalar advected by a random, incompressible velocity field
in the presence of a mean gradient is investigated by means of phenomenological Hopf equations. Numerical
solutions are provided in the case where the velocity is Gaussian, white in time, and with a power law in space,

^@v(rW)2v(0W )#2&;r 22e, and in the model introduced by Shraiman and Siggia@C. R. Acad. Sci.321, 279
~1995!#. Anomalous scaling exponents are found in both models. The numerics agrees with all the available
analytic, perturbative results. In addition, the angular dependence of the correlation function is explicitly
determined. In the Batchelor limit of random advection by a smooth velocity field, the exponent is found to
remain very close to 1, as found experimentally. In this limit, the three-point correlation function is found to be
very well represented, away from collinearity, by an explicit integral representation.@S1063-651X~98!05103-4#

PACS number~s!: 47.10.1g, 47.27.2i
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I. INTRODUCTION

Mixing is one of the most important properties of a tu
bulent flow. The problem can be simply formulated by co
sidering a passive scalarU, which evolves according to th
advection-diffusion equation

] tU1~uW •“
W !U5k¹2U, ~1!

where uW is the turbulent velocity field. The passive sca
therefore probes the velocity field, so its statistical proper
have a number of similarities to those of the turbulent vel
ity field itself @1#. In particular, the Kolmogorov theory@2,3#
can be extended to the scalar@4,5#. Although the spectrum o
scalar fluctuations shows a convincingk25/3 range@6#, the
higher-order correlation function do not follow the predi
tions of the Kolmogorov theory@1,7#. Significant departures
are observed already at the level of the three-point corr
tion function. In heated boundary layers, for example,
scalar derivative skewnesss[^(]xU)3&/^(]xU)2&3/2 ~x is the
coordinate in the downstream direction! remains of order 1,
essentially independent of the Reynolds number@1,8#. In this
flow, the shear induced near the wall breaks thex→2x sym-
metry, allowing a nonzero three-point correlation function
was also found that the structure function^@U(x)2U(0)]3&
behaves linearly withx @9#, whereas arguments based
Kolmogorov’s phenomenology would rather suggest ax5/3

dependence. These results imply that the anisotropy pre
at large scales has a strong influence all the way down
small scales.

The scalar derivative skewness was also observed to
main of order 1 in the simpler problem of mixing of a pa
sive scalar by a homogeneous isotropic turbulent flow, in
presence of an imposed scalar gradient@10–12#. We focus
here on the latter problem and denote byĜ the scalar gradi-
ent (uĜu51) and byu the scalar fluctuationU5u1G•rW, so
Eq. ~1! becomes

] tu1~uW •¹W !u5k¹2u2Ĝ•uW . ~2!
571063-651X/98/57~3!/2914~16!/$15.00
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The gradient introduces a forcing term, allowing one
maintain a steady state for the fluctuating scalar. We emp
size that in this problem, the symmetries impose that
three-point correlation function isodd in space.

Interestingly, the effect does not seem to depend on
precise statistical properties of the flow: A Gaussian rand
velocity field with an inertial range scalinĝ @v(rW)
2v(0W )#2&;rW2/3 is enough to obtain a scalar derivative ske
ness independent of the Pe´clet number@11#. This remark
suggests that much can be learned about these issues wi
help of simplified models. We focus here on two simplifie
models.

The problem of mixing by a random Gaussian, white
time velocity field with a scaling exponent 22e,

^va~rW,t !vb~rW8,t8!&5d~ t2t8!Cab~rW2rW8!, ~3a!

Dab~rW ![@Cab~0!2Cab~rW !#

5D0S ~d112e!dab2~22e!
r ar b

urWu2 D urWu22e,

~3b!

has been introduced long ago by Kraichnan@13#, who
showed that the N-point correlation function
^u(rW1)•••u(rWN)& obeys a closed equation of the form@14#

L~d,e!^u~rW1!•••u~rWN!&5RHS, ~4a!

where the operatorL(d,e) is defined in the inertial range b

L~d,e![(
iÞ j

N

Dab~rW i2rW j !] r i

a ] r j

b ~4b!

and the right-hand side~RHS! of Eq. ~4a! involves only
lower-order correlation functions. Anomalous scaling exp
nents may be obtained as zero modes of the operatorL(d,e),
homogeneous in space. The existence of such an eigenf
tion has been established analytically in the case of an
tropic forcing and in the case of an even-order correlat
2914 © 1998 The American Physical Society
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57 2915STRUCTURE OF THE THREE-POINT CORRELATION . . .
function in various limits@15,16#. In this model and in the
limit where urW12rW2u is much smaller than the other distanc
in the problem, theN-point correlation function behaves a
urW12rW2ue. In order to ensure that the correlation functio
behaves likeurW12rW2u2/3, as expected, one has to choose
valuee52/3.

A different class of models has been introduced
Shraiman and Siggia@17,18# in order to take into account th
finite correlation time as a function of scaletR;e21/3R2/3,
wheree is the rate of dissipation of turbulent energy. A set
points (rW1 ,rW2 ,...,rWN) separated from each other by a distan
;R is mapped under the action of the turbulent veloc
field, during a time tR , onto a new set of position
(rW18 ,rW28 ,...,rWN8 ). The main idea consists in decomposing t
velocity field as a sum of~i! an essentially constant piec
due to scales much greater thanR, plus~ii ! a coherent strain
at scale;R, plus ~iii ! an incoherent part, due to the sma
scale jittering. The large-scale uniform piece~i! affects the
N-point correlation function through the forcing term~mo-
tion in the gradient!. The coherent strain~ii ! corresponds to
advection by a smooth, random field (e50) @19#, whose
effect can be modeled by the Batchelor-Kraichnan oper
L0[L(d,e50) @Eq. ~4b! with e50#. The small-scale mo-
tion ~iii ! is the source of the eddy diffusivity and is model
phenomenologically by a perturbation to the Batchel
Kraichnan operatoraLD , whereLD is chosen here to be

LD5
3d

2
Rg

2S r 12
2 r 23

2 r 31
2

Rg
6 D 2/3

¹2, ~5!

wherer i j [urW i2rW j u, Rg
2[r 12

2 1r 23
2 1r 31

2 , anda is formally a
small parameter. The problem then reduces to

L~d,a!^u~rW1!u~rW2!u~rW3!&5RHS, ~6a!

with

L~d,a!5L01aLD , ~6b!

so the existence of anomalous exponents in this mode
determined by the zero modes of the operatorL(d,a). The
perturbation operator is dominant when two points co
close together, so in the limiturW12rW2u!urW12rW3u,urW22rW3u,
^u(rW1)u(rW2)u(rW3)&*urW12rW2u2/3, therefore reproducing the
behavior expected from the Kolmogorov analysis. For t
reason, we refer to this model as the pseudo-Kolmogo
model, or in short theK model. The validity of this phenom
enological model has to be established by direct confro
tions with experimental results. For the sake of the analy
we also considered the simpler model where the dissipa
is simply the LaplacianLD8 [a(d/6)Rg

2¹2, which will be
referred to as theL model.

The theoretical analysis of the Kraichnan model in t
limit e→0 @20#, appropriate to understand qualitatively th
case e52/3, and of theK model for small values ofa
@17,21# rests on singular perturbation theory. It is also po
sible to reduce the full problem to an elliptic operator in
rectangle in two-dimensions, which can be treated num
cally @22#. The purpose of this work is to analyze the so
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tions of the white-noise model andK model for the three-
point correlation function, in the presence of a me
gradient.

Section II is devoted to a review of the necessary theo
ical background, in particular, of the available informatio
from perturbation theory. The numerical methods are
plained in Sec. III. Section IV is devoted the numerical r
sults: We discuss the scaling exponents in the Kraich
model~Sec. IV A! and in theK model~Sec. IV B! and then
various results concerning the structure of the correlat
function. We briefly discuss our results in Sec. V.

II. THEORETICAL BACKGROUND

In this section we define our notation and introduce
theoretical results necessary to analyze our numerical res

A. Notation

We begin by introducing the vectors

rW 1[~rW12rW2!/&, rW 2[~rW11rW222rW3!/A6. ~7!

With these variables, the operatorL(d,e) reads

L~d,e![(
S3

urW 1u2e@~d112e!rW 1
2~]1

a]1
a2 1

3 ]2
a]2

a!

2~22e!r1
ar1

b~]1
a]1

b2 1
3 ]2

a]2
b!#, ~8!

the summation extending over the cyclic permutations
(rW1 ,rW2 ,rW3) ~groupS3!, which are equivalent to the transfo
mations

rW 1→2
rW 1

2
6
)

2
rW 2 , rW 2→7

)

2
rW 12

rW 2

2
. ~9!

The Laplacian operator inrW simply becomes the Laplacian i
rW .

It is convenient to express the two vectors (rW 1 ,rW 2) as
r i

a5( i 8Rii 8(x)j i 8ĥ i 8
a . The 232 matrixR(x) is the rotation

matrix of anglex in ‘‘pseudospace.’’ The two orthogona
unit vectorsĥ1 ,ĥ2 span the plane defined by (rW 1 ,rW 2). It is
enough to consider the variablesj1 ,j2 such that 0<uj1u
,j2 to parametrize all the possible configurations. The a
of the triangleurW 13rW 2u is simply equal toz5uj1j2u. We
also introduce the dimensionless variablew[2j1j2 /(j1

2

1j2
2) ~occasionally, we also introducej51/w!. The change

of variables (w,z)→(j1 ,j2) is one to one for21<w<1
and 0<sgn(w)z<`, with

j15S z

wD 1/2

~12A12w2!1/2, j25S z

wD 1/2

~12A12w2!1/2.

~10!

The variablesw andz provide a convenient parametriza
tion of the vicinity of ur1u50, i.e., of the region whereurW1
2rW2u!urW12rW3u,urW22rW3u. In this region,w and x are small,
rW 1'j2(wĥ1/21xĥ2), and rW 2'j2ĥ2 , so ur1u2'j2

2(w2/4
1x2).
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2916 57ALAIN PUMIR
The dilation operatorL[r i
a]r

i
a reduces in our variable

to L52z]z . We denote byl the scaling exponent of th
solution.

B. Expression of the differential operators

The operators considered hereL(d,e) and L(d,a) are
invariant under rotation, so they commute with the angu
momentum operatorsLab5 i ( j (r j

a]r
j
b2r j

b]r
j
a) and L2

[ 1
2 (a,bLabLab . Thus one may look for zero modes with

given angular momentuml @L2c5 l ( l 1d22)c#. Since the
symmetries of the problem impose that the solution is odd
space,l must be odd. We restrict tol 51 and look for a
solution of the form

C[^u~rW1!u~rW2!u~rW3!&

5uzul/2Ĝ•@w1~x,w!ĥ11w2~x,w!ĥ2#. ~11!

The limit where the three points are aligned,j1 /j2→0 or,
equivalently,w→0, z→0, requires some care. The correl
tion function reduces to a homogeneous function ofj2 , of
degreel. This suggests that whenw→0, w1 ,w2;uwu2l/2.
For this reason, we introducef i[uwul/2w i , so

C5S z

wD l/2

Ĝ•~f1ĥ11f2ĥ2! ~12!

with the additional constraint thatf1 and f2 remain finite
whenw→0.

The operatorsL(d,e) and L(d,a) reduce in the stripe
21<w<1 to the form

L5Aww]w
2 1Axx]x21Axw]x]w1Ax]x1Aw]w1A,

~13!

where theA’s are 232 matrices. They were computed wit
the help of the symbolic softwareMAPLE and the explicit
expressions in two dimensions are given in Appendix A.

The boundary conditions in the (x,w) plane result from
the various symmetries of the problem. Whenw50 ~the
points are aligned,rW 1 andrW 2 are parallel toĥ2!, the correla-
tion function must depend onĥ2 only, implying that
f1(x,w50)50. Also, when the points are close to perfe
alignment (w!1), the functionf2 is invariant underw→
2w, so]wf2(x,w50)50. TheS3 symmetry already men
tioned implies that the functionsf1 andf2 are periodic inx,
with a period equal to 2p/3. The uwu51 ~or, equivalently,
j25uj1u! case corresponds to an isosceles triangleurW12rW2u
5urW22rW3u5urW32rW1u. In this case, theS3 permutation
implies that the function C is invariant when the
vectors ĥ1 and ĥ2 are rotated by 2p/3. As a result,
f1(x,w561) 5 2 1

2 f1(x,w561) 6()/2)f2(x,w5
61) and f2(x,w561)52 1

2 f2(x,w561)
7()/2)f1(x,w561), so f1(x,w561)5f2(x,w5
61)50.

Because the function is odd whenrW 1,2→2rW 1,2,
f1,2(x1p,w)52f1,2(x,w). Finally, the function is invari-
ant when (rW1 ,rW2)→(rW2 ,rW1), that is, whenrW 1→2rW 1 andrW 2
→rW 2 , which amounts to (x,w)→(2x,2w). Combining
these symmetries, one concludes that it is enough to res
to the rectangle 0<w<1, 0<x<p/6, with the boundary
conditions
r

n

t

ict

f1~x,w50!5
]f2

]w
~x,w50!50, ~14a!

f1~x50,w!5
]f2

]w
~x50,w!50, ~14b!

f2~x5p/6,w!5
]f1

]x
~x5p/6,w!50, ~14c!

and

f1~x,w51!5f2~x,w51!50. ~14d!

The problem thus reduces to an elliptic eigenvalue pr
lem @22#. The scaling exponentl appears as a nonlinea
‘‘eigenvalue,’’ which has to be found as a function ofd and
a or e.

C. Properties of the Batchelor-Kraichnan operator

An important property is that the problem can be solv
exactly whena50 or e50. This is a consequence of th
SL~2! symmetry of the problem@17,18#; see also Ref.@23# in
the case of the four-point correlation function. Indeed,
Batchelor-Kraichnan operator expresses the condition of
tionarity of the correlation function when the flow reduces
a random, large-scale strain, implying that the operato
invariant when (rW 1 ,rW 2) is replaced byA(rW 1 ,rW 2), whereA is
a real matrix of determinant 1. This can be formally check
by introducing the generators of the group SL~2!: Gi j

5r i
a]r

j
a2 1

2 L, whereL is the dilation operator, already de

fined. The operatorG25 1
2 (Gi j Gji commutes with all the

generators of the group@Casimir operators of SL~2!#. Also,
the operatorsL, G2, and L2 commute with each other. I
turns out that the Batchelor-Kraichnan operatorL0 can be
expressed as

L0~d!52~d11!L212dG21
d22

4d
L~L12d!. ~15!

Interestingly, one may construct an explicit integral re
resentation of the solutions. In two dimensions, one no
that the operatorsL2, G2, L, and Gz5 i (G122G21) com-
mute with each other. The function

cn,m,q
l [z~l/2!2nE

0

2p df

2p

3E
0

2p du

2p
eimu1qf@ n̂i~f!r i

aêa~u!#2n ~16a!

is an eigenstate of (L2,G2,Gz ,L) with the quantum numbers
@1,n(n11),q,l#. In Eq. ~16a!, m561 andn̂(c) and ê(u)
are two unit vectors in two dimensions, in the direction giv
by the anglesu andc, respectively.

With the parametrization of the vectors (rW 1 ,rW 2)
and with the definition ĥ15„cos(g),sin(g)… and ĥ2

5„2sin(g),cos(g)…, the functioncn,m,q
l reduces to
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57 2917STRUCTURE OF THE THREE-POINT CORRELATION . . .
cn,m,q
l 5~j1j2!~l2n!/2ei ~qx1mg!

3E
0

2p

df@j1 cos~f!2 i j2 sin~f!#

3@j1
2 cos~f!21j2

2 sin~f!2#n21/2. ~16b!

The spectrum of the operatorL0 can be determined by
using the boundary conditions~14! @17,21#. They lead to
l51 and n51/2, but leave an infinite degeneracy
q: q53(2p11), wherep is an integer.

The technical details are more involved in three dime
sions~one needs six quantum numbers to completely spe
the problem!. A very similar integral representation of th
eigenmodes of the Batchelor-Kraichnan operator can
found, with the same degeneracy inq and the same value o
the scaling exponentl51.

D. Perturbation theory

The large degeneracy is lifted by the perturbation te
whene or aÞ0 @18,20,21#. A very important feature of the
perturbation theory is that close to the linew50 ~i.e., when
the three points are almost aligned!, the operatorL0 is for-
mally much smaller than the perturbation operator. Neaw
50, L0 in three dimensions reduces to

1

2d
L0S f1

f2
D5Fw2]w222lw]w1w2]x212wS 0

1
21
0 D G

3S f1

f2
D , ~17a!

whereasLD reduces to

1

2d
LDS f1

f2
D5b̃~x!F]w

2 1
2

w
]w1]x212wS 0

1
21
0 D G S f1

f2
D

1b̃~x!S 24f1 /w2

~211l214l!f2
D , ~17b!

where b̃(x)5„@12cos(2x)#$12cos@2(x12p/3)#%$1
2cos@2(x22p/3)#} …

2/3. A comparison Eqs.~17a! and ~17b!
shows that the perturbation term is formally dominant
uwu!a1/2. Similar considerations lead to the conclusion th
for 2 lnuwu!e21, the Batchelor operator is small compared
the perturbation term. Because of this property, one need
use matched asymptotic expansions. Technically, in the
of the K model in three dimensions, one defines a sca
variablez5w/Aa and one expands the differential opera
in powers ofa1/2. Away from the pointsx50,62p/3, the
dependence onx is slow (]x!]w). The problem therefore
reduces to a single differential equation onz, which can be
solved with the conditionf2(x,w50)5a(x). Imposing
that forz→` but w→0 ~in the matching region! the solution
consists of a superposition ofq modes, one obtains that th
function a(x) must satisfy the ordinary differential equatio
-
fy

e

r
,

to
se
d
r

b̃~x!~a91a!1
20

9
da50, ~18!

with d[ lima→0(l21)/a ~for the K model in three dimen-
sions!. The boundary conditions impose thata(x5p/6)50.
Nearx50, the solution of Eq.~18! behaves as

a~x!5a0uxu2/3~11uxu2/31••• !1a1uxu~11uxu2/31••• !.
~19a!

As there exists a unique solution of Eq.~18! with a(p/6)
50 anda8(p/6)522, say, the coefficientsa0 and a1 are
completely determined byd. To actually obtain a solution o
the problem, one has to make sure that the solution a
from x50 matches with the solution of the full problem
This is a nontrivial task, as one has to solve a fully tw
dimensional elliptic problem in the neighborhood of th
point (x,w)5(0,0), with unspecified boundary condition
A local expansion, valid in a region of size;a3/2, can be
relatively easily generated~see Appendix B!. However, this
expansion doesnot help to match the solution further awa
~for x!1!, as there is no overlap between the tw
asymptotic domains.

For the white-noise problem, the functiona(x) satisfies
the ordinary differential equation~18!, with f (x)5@cos2(x)
21#@4 cos2(x)21#ln@12cos(2x)#1••• , where the ellipsis de-
notes the terms obtained by replacingx by x62p/3 in the
previous expression. The behavior nearx50 is therefore
given by

a~x!5a0u ln~x!u2d~11••• !1a1uxu~11••• !. ~19b!

The inner problem, close to (x,w)5(0,0), has been ana
lyzed, leading to the conclusion that the solution isd50
@20#, a prediction confirmed by the numerical results@22#.

E. Integral representation of the correlation function

The solutions of theK model and of the white-noise prob
lem near the Batchelor limit can be parametrized by an in
gral representation, valid away from collinearity (w50).
Namely, for w@a1/2, the operatorL(d,a) reduces to the
Batchelor-Kraichnan operator, up to a small correction, so
solution is a combination of zero modes of this operat
Summing the modescn,m,q

l @see Eq.~16a!#, one obtains the
representation

C5Ĝ•E
0

2p j1 cos~f!ĥ11j2 sin~f!ĥ2

@j1
2 cos~f!21j2

2 sin~f!2#~12l!/2 f ~x1f!df.

~20!

Imposing that this function tends toa(x) whenw→0 allows
one to relatef (x) to a(x). When uj1u!j2 and in the limit
l'1, one finds thata(x)5*0

2psin(f)usin(f)ul21f(f1x)df.
The functiona(x) is even and is expected to be represen
by a sum of singularities of the formuxum singularity @the
two dominant exponents arem52/3 and 1; see Eq.~19a!#.
The function f (x) is therefore odd and has singularities
the form f (x);xuxum222l when x→0. This suggests to
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2918 57ALAIN PUMIR
approximate the three-point correlation function by Eq.~20!,
with a functionf that contains the two dominant singularitie
compatible with Eq.~19!:

f ~x!511~ f 2/31 f 1uxu1/3!/uxu1/31l

1~ f 2/31 f 1up/32xu1/3!/up/32xu1/31l

for 0<x<p/3, ~21!

wheref 2/3 and f 1 are two parameters. This parametrization
expected to work for small values ofa and away fromw
50.

An important consequence of the integral representa
~20! is that it suggests that the overall shape of the thr
point correlation function depends mostly on the global sc
ing exponentl and the exponent of the singularity describi
the limit where two points merge.

In the white-noise problem and for finite values ofe, the
fact thatd50 @20,22# implies that the dominant singularit
of f is f (x)'x/uxu2, so that away fromw50 and for small
values of e, the integral representation~20! with f 2/350
should provide a good parametrization of the solution.
larger values ofe, the solution nearr150 can be expanded
in powers ofur1ue. This suggests thata(x) will have singu-
larities of the formuxune, and for not too small values ofe,
one may also try to compare the solution with the integ
representation with the appropriate singularities. In parti
lar, for e52/3, one may expect that the representation u
for theK model will also represent the solution qualitativel

III. NUMERICAL METHODS

The strategy to determine the zero modes of the oper
consists in discretizing the operatorsL(d,e) or L(d,a),
which therefore become matrices, and to compute num
cally their determinant as a function ofl, the scaling expo-
nent.

We have chosen here to use centered finite differen
We work with a rectangular, separable mesh. The solutio
stored as a sequence of consecutive linesw5const, so the
differential operator is reduced to a banded matrix. The
terminant can be found by LU decomposition, a stand
method@26#, using public domain routines. IfN discretiza-
tion points in each direction are used, then both the amo
of memory space and CPU time needed are of order;N3.
Our calculation were performed on a workstation (N&70)
and on a Cray Supercomputer C98 (N&160).

The differential operatorsL(d,e) andL(d,a) are singular
nearw50 andx50, as some of the coefficients go to zer
For this reason, the pointsw50 andx50 were not explic-
itly included in the calculation. Also, nearw51, the coeffi-
cient of ]w

2 diverges, leading to aA12w2 behavior of the
solution nearw51. To make the solution smooth nearw
51, we redefined a variableu by 12u5A12w. The unfor-
tunate feature of this change of variable is that it tends
refine the solution in the region nearw51 instead of the
region nearw50, where they are much needed.

In order to properly resolve the solution in the singu
regionur1u→0 as well as in the vicinity ofw50, we imple-
mented nonuniform meshes in both thex and w directions.
This was achieved by taking~in the w direction, for ex-
n
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ample! a function of the formgw(u)5uwu1(12uw)u2,
which maps ~0,1! onto itself (0<uw<1). As uw gets
smaller, more points get pushed in thew50 region, leading
to an enhanced resolution in this area.

We checked thoroughly the calculation of the matrix
applying the discretized differential operator to a number
known functions. Examples include theq modes@see Eq.
~16!#, which are zero modes of the Batchelor operator wh
l51. They can be explicitly computed and expressed w
elementary functions. We checked that when the numbe
points in each direction increases, both the maximum and
L2 norm of iL(d,e50)(f2

f1)i decrease to zero.

The Laplacian term was checked by applying it to t
‘‘coordinate functions’’

rW 15S j1 sin~x!

j2 cos~x! D , rW 25S j1 cos~x!

2j2 sin~x! D
and making sure that whenl51, ¹2rW 15¹2rW 250 ~except
near the boundaries!. In the same spirit, we also checked th
(r1

21r2
2)¹2@(r1

21r2
2)rW 1,2#54(d11)@(r1

21r2
2)rW 1,2# ~when

l53!.
To check the operatorL(d,e) ~white-noise problem!, we

returned to the definition~4b! and checked individually each
term in the sum. The polynomials (rW 1)2rW 1 and (rW 2)2rW 1

are eigenvectors of (d112e)rW 1
2(]1

a]1
a2 1

3 ]2
a]2

a)2(2
2e)r1

ar1
b(]1

a]1
b2 1

3 ]2
a]2

b) with the eigenvalues 2(d21)(d
142e) and 2(d21)(d122e) ~l53!. This relation was
checked directly on the discretized version of the differen
operator. We also checked that the polynomialP(rW 1 ,rW 2)
[(r1

22r2
2)rW 212(rW 1•rW 2)rW 1 is a zero mode ofL(d,e52)

(l53).
In order to compute the eigenvalue,l, we proceed by

dichotomy, a straightforward operation once two values ol
are known, such that the determinants of the matrix are
opposite signs. A crude search was made at low resolut
which then provides a good starting point at higher reso
tion where the calculations are more expensive. The ac
racy of the computed eigenvalue was set to better than
significant figures, which was reached in less than 15 ite
tions.

The ultimate test that convinced that our algorithm
properly working was obtained by studying theL model@ob-
tained by replacing (r 12

2 r 23
2 r 31

2 ) by R6 in Eq. ~5!#. The eigen-
functions are of the formf15 f 1

q(w)cos(qx) and f2

5 f 2
q(w)sin(qx). The functionsf 1,2

q (w) satisfy some ordinary
differential equations, which define a boundary-value pro
lem, and can be solved by the shooting method. The eig
values obtained from the full partial differential equatio
agree with the eigenvalues obtained by solving the system
differential equations and the agreement gets better when
mesh is refined~N increases!.

IV. NUMERICAL RESULTS

A. Scaling exponents in the white-noise problem

The lowest branch of eigenvalues, computed as explai
in the preceding section, are shown in Fig. 1 for the whi
noise problem in 2@Fig. 1~a!# and three-dimensions@Fig.
1~b!#. The convergence of our numerical results is very go
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57 2919STRUCTURE OF THE THREE-POINT CORRELATION . . .
neare52: The results obtained withN540 and 160 evenly
spaced mesh points agree with four significant figures. In
range of parameters, the perturbation analysis in 22e pre-
dicts that@22,24,25#

l~e!532S d12

d14D ~22e!. ~22!

This prediction works extremely well, as shown in Fig.
where the straight lines corresponding to Eq.~22! are plotted.

The convergence neare50 is a more delicate matter du
to the very singular nature of the limit. Figure 2 shows t
values oflN(e) of the calculated exponent for a set of valu
of the numberN of grid points~these values were obtaine
with refined meshes, withux50.3 and uw50.1!. As the

FIG. 1. Scaling exponent of the three-point correlation funct
in ~a! two and~b! three space dimensions for the white-noise mod
The results were obtained with 160 grid points in each directi
The dashed lines correspond to the perturbative resultl532(d
14)/(d12)(22e) neare52. The exponents are less than 11e,
implying anomalous scaling in this model.
is

,

number of grid pointsN increases, the value oflN(e) de-
creases. The full line was obtained by fitting the eigenval
by

l8N~e!5l`~e!1Dl~e!/N. ~23!

The quality of the fit, measured by u@lN(e)
2l8N(e)#/@lN(e)21#u was found to be better than 1022 for
all the values ofN considered, down toe50.031 25. Our
results give clear evidence that the slope of the cu
@l(e)21#/e goes to 0 whene→0. This generally agrees
with the prediction of perturbation theoryl'11de, with
d50.

We emphasize that the branch we found implies
anomalous scaling of the three-point correlation function
any value ofe. Indeed, the naive scaling exponent resulti
from dimensional analysis of the differential equation isl
511e. The exponents determined here is smaller than
1e, establishing the existence of anomalous scaling in
model.

The branch of solutions we have described seems to
the lowest branch of a presumably infinite sequence of s
tions. The next branch of solutions starts froml55 neare
52 @l552 6

5 (22e)# in three dimensions and goes dow
towardsl51 neare50; see Fig. 3. In view of the conver
gence problem of our numerical algorithm neare50, it is
difficult to determine precisely the behavior neare50.

B. Scaling exponent in theK model

The result for the lowest branch of solutions of theK
model are shown in Fig. 4, in two@Fig. 4~a!# and three di-
mensions@Fig. 4~b!#. The convergence problem alluded to
the preceding subsection are also present in this problem
fact, the problem appears much more severe in two dim
sions, where a strong refinement of the mesh near~0,0! was

l.
.

FIG. 2. Convergence of the numerical results neare50 of the
exponent in the white-noise model (3d) when the number of grid
points increases. The full line is the result of the extrapolat
N→` using Eq.~23!. We used a refined mesh nearx50, w50:
ux50.3, uw50.1.



e
d
n

s

f

-
e

ch
th

si
te
nc
to

tu

ic

r
p

io
ry
n

e
n

s

ery

fo

ion

h a

2920 57ALAIN PUMIR
needed in order to obtain sensible results~we had to take
ux50.1 anduw50.05!. In comparison, the results in thre
dimensions converged much better. Another unexpected
ficulty has to do with the small size of the asymptotic regio
Figure 5 shows the value ofd(a)[@l(a)21#/a, after ex-
trapolating the values of the exponents determined for a
quence of values ofN with a fit of the form~23!. The dashed
line shows a fit ofd~a! in three dimensions by a function o
the form d(a)'a1a1/21a2a1a3a3/2, with a1'2, a2
'22.5, anda3'1.

In addition to the lowest ‘‘fundamental’’ branch of solu
tions, there exists a seemingly infinite number of high
branches. We have investigated the two next higher bran
of solutions, shown in Fig. 6. The numerics suggests that
behavior ofl is of the form l511d2,3a1O(a3/2), with
d2'4.5 andd3'12.

The results regarding the lowest branch of solution~Fig.
4! agree with the predictions of the perturbation analy
@21#. The numerical results presented here is also consis
with the perturbative calculation in the sense that the fu
tion a(x) determined numerically seems to converge
wards the solution of Eq.~18! with d50, which reduces
simply toa(x)52 sin(p/62x) ~see Fig. 7!. This shows that
the leading singularity nearx50 is a(x)'uxu, as it was the
case in the white-noise problem neare50.

Because our numerics is not precise enough to cap
accurately the higher branches of solution nearx50, it is
difficult to make detailed comparisons between the pred
tions of Eq.~18! and the functionf2(x,w50) determined
numerically. Still, the solutions corresponding to highe
order branches have an increasing number of nodes, as
dicted from Eq.~18!, which is of Sturm-Liouville type.

C. Structure of the correlation function when two points merge

As already explained, the structure of the wave funct
near (x,w)5(0,0), that is, when two points merge, is a ve
important aspect of the solution. We discuss here our
merical results in this limit.

FIG. 3. Scaling exponent for the higher branch of solutions
the white-noise problem in three dimensions.
if-
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In order to compare with the expansion nearur1u50 in
the innermost region~see Appendix B! we have investigated
the three-point correlation function at a fixed value ofrW 2
(5 ŷ) and as a function ofrW 1 . At a fixed value of the norm
of rW 1 ~denotedr!, the wave function depends only on th
angleu5arctan(w/2x) and a straightforward decompositio
in Fourier series(mAm(r)cos(mu) allows one to extract the
various waves, to be compared with Eqs.~B3! and ~B4!.

Figure 8 shows ther dependence of the modesm50 ~s
wave! andm52 for a50.006 25, 0.025, 0.1, and 0.4. Ther
dependence at the two largest values ofa are consistent with
the predictions of Appendix B: Them50 mode behaves a
211r2/3, whereas them52 mode behaves asr4/3. For the
smallest values ofa ~a50.006 25 and 0.025!, the two com-
ponents seem to behave linearly all the way down to v
small values ofr.

r

FIG. 4. Scaling exponent of the three-point correlation funct
in ~a! two and ~b! three space dimensions for theK model. The
results were obtained with 160 grid points in each direction, wit
refined mesh near (x,w)5(0,0) ~ux50.1, uw50.05 in two dimen-
sions andux50.3, uw50.1 in three dimensions!.
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57 2921STRUCTURE OF THE THREE-POINT CORRELATION . . .
Our results are completely consistent with the numer
results concerning the dependence ofl as a function ofa
and with the expansion of the solution nearr50, described
in Appendix B. Neara50, (l21)/a→0, so the expansion
in powers ofr2/3 presented in Appendix B is multiplied b
an overall factor that goes to zero whena→0. On top of it,
the expansion is formally valid only in a very small neig
borhood of (x,w)5(0,0). This explains why ther2/3 behav-
ior cannot be seen for small values ofa ~a50.006 25 and
0.025!. For the larger values ofa, the dependence nearr
50 is consistent with the predictions of Appendix B.
particular, the leading-order coefficients of thes andd waves
in the r2/3 expansion of Appendix B agree with the resu

FIG. 5. Local sloped(a)[@l(a)21#/a neara50 for the K
model. The dashed line corresponds to a fit by a functional fo
d(a)'2a1/222.5a1a3/2.

FIG. 6. Scaling exponent for the next two higher branches
solutions of theK model in three dimensions. Neara50, l2(a)
'114.5a andl3(a)'1112a.
l

shown in Fig. 8. The linear dependence onr of them50 and
2 wave can be understood with the help of the integral r
resentation~19! and ~20!, as we now discuss.

D. Structure of the correlation function when a˜0

We restrict the discussion here to theK model, although
many of the results presented apply as well to the wh
noise problem. The results of Sec. IV B imply that the dom
nant singularity ofa(x) is ;uxu, so the coefficientf 2/3 in
Eq. ~19! must be zero. The calculation of the integral rep
sentation turned out to be fairly insensitive to the prec
value of f 1 , provided it is not too small. We have chose
here f 1510.

Figure 9 shows the isocontour patterns of the compone
f1 and f2 in the rectangle (0,p/6)3(0,1) in the (x,w)
plane, obtained numerically fora50.006 25. The tick marks
along the perimeters in Fig. 9 show the mesh points use
the calculation. The isocontour lines obtained from the in
gral representation~20! and ~21! with l51.000 92,f 2/350,
and f 1510 are very close to Fig. 9. A more quantitativ
comparison can be obtained by computing the difference
tween the numerical solution and the integral representat
Figure 10 shows the isocontour lines of this difference.
expected, the difference is largest near the linew50. To be
more precise, one may compute theL2 norm of the differ-
ence between two solutionsf andc as the minimum ofif
2cci on c. The L2 norm of the difference fora
50.006 25 is less than 2% of theL2 norm of the solution.
The difference between the solution and the integral rep
sentation~20! and ~21! computed from Eqs.~20! and ~21!
( f 2/350, f 1510! is shown in Fig. 11 as a function ofa. The
difference goes to zero whena→0 like a2/3.

The structure of the integral representation near the p
(x,w)5(0,0) can be determined analytically:

f

FIG. 7. Functiona(x)[f2(x,w50) in three dimensions, de
termined numerically fora50.025 in theK model in three dimen-
sions. The normalization is chosen so thata8(x5p/6)522. The
function is very close to 2 sin(p/62x), which is the solution of Eq.
~18! with d50; the agreement improves whena diminishes.



f

2922 57ALAIN PUMIR
FIG. 8. Thes-wave component of the solution of theK model in three dimensions as a function of~a! r and ~b! r2/3 and thed-wave
component of the solution as a function of~c! r and ~d! r4/3. The values ofa are 0.006 25, 0.025, 0.1, and 0.4. At the largest value oa,
the s wave behaves as211const3r2/3 and thed wave asr4/3.
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f15w~u2p/2!, f25const12x~u2p/2!, ~24!

with u5arctan(w/2x) ~see Appendix C!. It implies that both
the m50 and 2 modes behave linearly withuru, as found
numerically. We emphasize that the very good agreem
found with the integral representation crucially depends
the fact that theuxu2/3 singularity is not present in the integra
representation@f 2/350 in Eq. ~21!#.

Our results show that very neara50, the wave function
can be precisely fit by the integral representation~20! and
~21!. It is remarkable that the solution of this nontrivial pro
lem can be expressed by a simple integral, involving o
elementary functions.

Very similar results can be obtained for the white-no
problem since it was also found in this limit that the dom
nant singularity of the functiona(x) is ;uxu. We merely
show here the difference between the numerical solution
nt
n

y

d

the integral representation~Fig. 12!. As in theK model, the
difference between the two solutions goes to zero wh
e→0.

E. Structure of the correlation function for larger values of a

Figure 13 ~Fig. 14! shows the isocontour lines in th
(x,w) plane of the function (f1 ,f2) for theK model for the
valuea50.7 ~for the white-noise problem fore52/3!. In the
latter case, the correlation function is expected to behav
urW12rW2u2/3 when urW12rW2u!urW12rW3u;urW22rW3u, like in the K
model. The scaling exponents arel(a50.7)51.375 and
l(e52/3)51.381, so the two solutions have very clo
overall scaling exponents, as well as the same limit wh
two points get close.

Figures 13 and 14 show that the overall structures of
functions are very similar. The difference between the so
tions corresponding toe52/3 anda50.7 (a50.1) is found
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57 2923STRUCTURE OF THE THREE-POINT CORRELATION . . .
to be ;3% (;13%) of the norm of either wave function
This similarity may be understood to some extent as res
ing from the parametrization~20! of the solution, which de-
pends essentially on the overall exponent of the solutiol
and the exponent of the singularity of the wave function n
ur1u50. From this point of view, since the solutions corr
sponding toa50.7 ande52/3 have very close scaling ex
ponentsl51.375 and 1.381 and the same power law wh
two points get very close, the integral representation~20!
predicts that the two wave functions are very close in
regions where Eq.~20! is valid ~away fromw;0!.

As the values of the parametersa and e compared here
are not so small, one has to take the integral representa
with some care. Higher-order terms in the perturbation
pansion presumably become large and may introduce sig
cant corrections away from thew50 axis. For this reason
the integral representation is not expected to give a v
precise representation of the solution. Still, it is remarka
that the two solutions are so close.

FIG. 9. Isocontour line pattern in the (x,w) plane of the func-
tion ~a! f1 and ~b! f2 determined numerically for theK model in
three dimensions fora50.006 25. The tick marks show the gri
points. The exponent isl51.000 91. The contour intervals are
31022 ~a! and 1021 ~b!.
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F. Test of the SL„2… symmetry

The existence of the SL~2! symmetry of the Batchelor
Kraichnan operator has very important consequences in
problem. An interesting question is how much of the sy
metry remains when the perturbation is turned on. The g
here is to understand whether the SL~2! symmetry could be
observed in experiments.

In order to test the SL~2! symmetry in this problem, we
simply apply theG2 operator to the wave function dete
mined numerically. It the symmetry holds, the eigenfuncti
should remain an eigenvalue ofG2. In the following, we
study how close the solution remains to an eigenvalue ofG2

so as to understand whether the SL~2! symmetry holds.
Technically, the operatorG2 can be simply written by

separating them561, q56(6p13)p>0 components,
wherem is the azimuthal quantum number andq is the quan-
tum number associated withGz in two dimensions; see Sec
II D. This leads us to expand the numerical wave functi

FIG. 10. Differences between the numerical solutions obtai
for a50.006 25~Fig. 8! and the integral representation. TheL2

norm of the difference is'1.5% of the norm of the numerica
solution. The countour intervals are 231023 ~a! amd 831023 ~b!.
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f5f1(x,w)cosu1f2(x,w)sinu as a Fourier series inx and
u :

f[(
q

f1
q cos~u!sin~qx!1f2

q sin~u!cos~qx!. ~25!

By rearranging the terms in this series, one concludes
the functions aq

1(w)5@f1
q(w)1f2

q(w)# and aq
2(w)

5@f1
q(w)2f2

q(w)# are the (m51,q) and (m521,q) com-
ponents of the solution. The operatorG2, acting on the func-
tion f transforms„aq(w),bq(w)… into „ãq

1(w),ãq
2(w)…, de-

fined by

FIG. 11. TheL2 norm of the difference of the solution of theK
model and of the integral representation, obtained withf 2/350, f 1

510, andl determined numerically. The difference goes to ze
like a2/3.

FIG. 12. TheL2 norm of the difference of the solution of th
white-noise problem in three dimensions and of the integral re
sentation, obtained withf 2/350, f 1510, andl determined numeri-
cally. The difference goes to zero likeex, x'0.6.
at

ãq
1~w![w2]w@~12w2!]waq

1~w!#2
w2

4

q211

12w2 aq
1~w!

2
wq

2~12w2!
aq

1~w!, ~26a!

ãq
2~w![w2]w@~12w2!]waq

2~w!#2
w2

4

q211

12w2 aq
2~w!

1
wq

2~12w2!
a2q~w!. ~26b!

Finally, perturbation theory@21# suggests that at leading o
der, only the productm3q matters, so it seems appropria
to investigate the ratiosãq

6(w)/aq
6(w). In the case of the

Batchelor-Kraichnan operator, these two ratios are equa
3/4. If the correlation function were to remain an eigenfun
tion of G2, there ratios would remain constant.

Figure 15 shows the ratiosãq
1(w)/aq

1(w) ~full line! and
ãq

2(w)/aq
2(w) ~dashed line! for q53 as a function ofw for

e-

FIG. 13. Isocontour patterns in the (x,w) plane of the functions
~a! f1 and~b! f2 solutions of theK model in three dimensions with
a50.7 (l51.375). The contour intervals are 231022 ~a! and
1021 ~b!.
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57 2925STRUCTURE OF THE THREE-POINT CORRELATION . . .
the solution of theK model fora50.025, 0.1, and 0.4. Fo
a50.025 and 0.1, these functions show a sharp varia
nearw50 and a more gentle variation away fromw50. The
variation is sharper asa gets smaller, in agreement with th
perturbation theory, which predicts a boundary layer wid
of sizea1/2. Whena50.4, the ‘‘boundary layer’’ is so thick
that it extends very far away fromw50. As a decreases, the
ratios ã3

6(w)/a3
6(w) are very close to 3/4, as expected f

the zero modes of the Batchelor-Kraichnan operator.
Away from the boundary layer nearw50, the values of

ã3
6(w)/a3

6(w)23/4 grow roughly linearly witha. To un-
derstand this phenomenon, we begin by recalling that a
from w50, the solution is close to a solution of th
Batchelor-Kraichnan operator. Theq563 component of the
solution is therefore close to the eigenmode given by
~16!, with n51/2, l51, m561, andq563, and referred
to here for simplicity asc0 . A formal perturbation theory in
the formc[c01ac11O(a2), valid away fromw50, may
be constructed. Standard perturbation theory then lead

FIG. 14. Isocontour patterns in the (x,w) plane of the functions
~a! f1 and ~b! f2 solutions of the white-noise problem in thre
dimensions withe5

2
3 (l51.380). Observe the very close simila

ity to Fig. 13. The contour intervals are 231022 ~a! and 1021 ~b!.
n

h

y

.

to

(G223/4)c152LDc0 , which implies thatã3
6(w)/a3

6(w)
23/4a(LDc0)6/a3

6(w)1O(a2), consistent with the nu-
merical results.

The ratios ãq
6(w)/aq

6(w) for higher values ofq (q
59,15,...) show a qualitatively similar behavior. As th
value of q becomes larger, however, the ratios determin
numerically are further away from the value 3/4, correspo
ing to the Batchelor-Kraichnan operator.

It results from Fig. 15 that the SL~2! symmetry, as mea-
sured by the ratiosãq

6(w)/aq
6(w), is significantly affected

by the perturbation term, even for very small values ofa.
The same conclusion is true for the white-noise problem
particular, the SL~2! symmetry is completely lost whene
52/3 in this sense.

The conclusion of this subsection is that the SL~2! sym-
metry is presumably very difficult to check directly, at lea
by using directly theG2 operator. This can be understoo
sinceG2 is a second-order operator, which tends to amp
the differences greatly. The results presented here are m
less favorable that the direct comparison with the integ
representation, presented in Sec. III E. As a consequenc
seems very unlikely that one will be able to check direc
the SL~2! symmetry directly from experimental data. A com
parison with the integral representation appears to be m
appropriate.

V. CONCLUDING REMARKS

We have presented a detailed numerical investigation
two classes of approximate models, introduced to desc
turbulent advection. Mathematically the study of the thre
point correlation function, in the presence of an external g
dient and for these models, can be formulated as an elli
~nonlinear! eigenvalue problem. This problem can be trea
numerically using standard routines and both the expon
and the full correlation function can be determined.

One important conclusion is that our numerical resu
generally confirm all the available theoretical predictions.
particular, the fairly sophisticated asymptotic calculati
near the Batchelor limit captures well the features of
numerical solution. In particular, close toa50 in the K
model, the exponent remains close to 1:d[ lima→0(l21)/
a50. The same behavior has been found in the white-no
problem.

As expected from perturbation theory, several import
properties of the correlation function can be deduced fr
the value ofd. The Batchelor-Kraichnan operator is infinite
degenerate and the perturbation term lifts the degeneracy
effectively determines the solution by selecting the combi
tion of modes~selection of the correlation function!. This
property is expressed by the integral representation~20! and
~21!. We have found that the solution is indeed very w
represented by the integral representation, a nontrivial re
since it expresses the solution of the elliptic problem as
elementary integral. Once again, the results are very sim
for the K model and for the white-noise problem. In a wa
we do not understand at the moment, these results sugg
universality of the solution of the problem near the Batche
limit.

This study was intended to investigate the persistence
small-scale anisotropy in the mixing of a passive scalar
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FIG. 15. Ratiosãq(w)/aq(w) ~full line! and b̃q(w)/bq(w) (q
53) as functions ofw for the solution of theK model of a
50.025 ~a!, 0.1 ~b!, and 0.4~c!. As a increases, these ratios a
further away from a constant value, showing that theG2 symmetry
is lost.
the presence of an external gradient. The fact that the ex
nent observed experimentally is approximately equal to
suggests that a small value ofa or e has to be chosen in orde
to compare experiments with the predictions of the mod
The value of the exponent for the white-noise problem w
e52/3 is l'1.38, much larger than what is found expe
mentally. This suggests that the predictions of the wh
noise model cannot precisely describe the experimenta
sults. The complete determination of the three-po
correlation function allows one to compare the results of
model with direct experimental measurements and thus
gauge the validity of theK model.
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APPENDIX A

In this appendix we give the explicit form of the differ
ential operators studied numerically in our variables (x,w),
in two dimensions. In the following,I is the identity matrix
andsx andsz the Pauli matricessx[(1

0
0
1) andsz[(0

1
21

0 ).
The functionb~x! is defined by

b~x!5„@12A12w2 cos~2x!#

3$12A12w2 cos@2~x12p/3!#%

3$12A12w2 cos@2~x22p/3!#%…2/3, ~A1!

1. K-model in two dimensions

Aww5~12w2!@w21ab~x!#3I , ~A2!

Axx5@w21ab~x!#/~12w2!3
I

4
, ~A3!

Axw50, ~A4!

Ax5w/~12w2!@11ab~x!#sx/2, ~A5!

Aw5$@~l22!w22l#w22ab~x!w%3I , ~A6!

A5@~2l2l2!w21~l21!~l13!1ab~x!~2l1l2!#3
I

4
.

~A7!
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2. White-noise problem in two dimensions

Aww5„

2
3 ~32e!w~12w2!$@12A12w2 cos~2x!#/w%12e/2

2 1
3 ~22e!w2~12w2!@112 cos~4x!#$@12A12w2 cos~2x!#/w%2e/21•••…3I , ~A8!

Axx5S ~32e!w

6~12w2!
@112A12w2 cos~2x!#$@12A12w2 cos~2x!#/w%12e/2

2
22e

12~12w2!
@w222 cos~4x!12A12w2 cos~2x!#$@12A12w2 cos~2x!#/w%2e/21••• D3I , ~A9!

Ax5S 2l~32e!w

3A12w2
cos~2x!$@12A12w2 cos~2x!#/w%12e/21

22e

6~12w2!
$@4~l21!2lw2#A12w2 sin~2x!12@12l1~1

1l!w2#sin~4x!%3$@12A12w2 cos~2x!#/w%2e/21••• D 3I 1S 2~32e!w2

3~12w2!
$@12A12w2 cos~2x!#/w%12e/2

1
~22e!w

6~12w2!
$@12A12w2 cos~2x!#/w%2e/2@2A12w2 cos~2x!12 cos~4x21!#1••• D3sx , ~A10!

Axw52
~22e!w

3
„$@12A12w2 cos~2x!#/w%2e/2@2 sin~2x!2A12w2 sin~4x!#1•••…, ~A11!

Aw5„

4
3 ~32e!w2$@12A12w2 cos~2x!#/w%12e/23@211~l22!A12w2 cos~2x!#

2w~22e!/3$@12A12w2 cos~2x!#/w%2e/23$2~22l!~12w2!cos~4x!1A12w2~3l24!cos~2x!

2@~22l!w21l#%1•••…3I 1„2 4
3 ~32e!wA12w2$@12A12w2 cos~2x!#/w%12e/2 sin~2x!

1 2
3 ~22e!w2$@12A12w2 cos~2x!#/w%2e/2 sin~4x!1•••…3sx , ~A12!

A5S 2
~32e!w

6~12w2!
$@12A12w2 cos~2x!#/w%12e/2@122 cos~2x!A12w2#

1
~32e!w

6
$@12A12w2 cos~2x!#/w%12e/2@2l1l212A12w2~2l2l2!cos~2x!#

1
~22e!w2

12~12w2!
$@12A12w2 cos~2x!#/w%2e/2@122 cos~4x!#2~22e!/12$@12A12w2 cos~2x!#/w%2e/2

3@2~12w2!~l222l!cos~4x!1A12w2 cos~2x!~8l26l2!1w2~2l2l2!14~l22l!#1••• D
3I 2S 2~32e!w2l

3A12w2
sin~2x!$@12A12w2 cos~2x!#/w%12e/22

~22e!w

6~12w2!
$@12A12w2 cos~2x!#/w%2e/2

3$@2l~12w2!24#sin~4x!1A12w2 ~423l!sin~2x!%1••• D 3sx . ~A13!
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APPENDIX B

In this appendix we give the expression of the solut
near the pointrW 150. Without loss of generality, we tak
j251 and introduce the variableu52x. Physically,u is the
coordinate ofrW 1 along the axis parallel torW 2 , whereasw is
the distance to the origin in the plane perpendicular torW 2
@the norm ofrW 1 is denoted asr, with r[ 1

2 (u21w2)1/2#. This
interpretation suggests the use of also spherical coordin
u5r cosu andw5r sinu.

For theK model, in three dimensions, the equations
duce in the limitur1u→0 to

S 9

8D 2/3

a~u21w2!2/3F]w
2 1]u

21
1

w
]w2

1

w2 S 1
0

0
0D G S f1

f2
D

52Fw2~]w
2 1]u

2!2w]w1S 0
21

1
0D ]u1

5

3
~l21!G

3S f1

f2
D . ~B1!

Whenl51, (f1 ,f2)5(0,21) is a solution~zeroth order!.
A systematic expansion can thus be generated by sim
plugging in the (n21)th order on the right-hand side of Eq
~A1! and solving the inhomogeneous equation to determ
the nth order. The expansion is formally valid providedu2

1w2!a3. The first orders determined in this way are

S f1

f2
D5S 0

21D1d~a!~2r!2/3S f 1~ r̄,u!

f 2~ r̄,u! D , ~B2!

with d(a)[( 8
9 )2/3(l21)/a and r̄[r/a3/2, and

f 1~ r̄,u!51 9
26d~a!~2r̄ !2/3 sin u cosu1O~ r̄4/3!,

~B3!

f 2~ r̄,u!51 3
2 2$@ 45

56d~a!a2 27
182#1 3

26 sin2 u%r̄2/31O~ r̄4/3!.
~B4!

These results suggest that the solution is made of ans-wave
piece ~independent ofu! that behaves as 11O(r2/3), pro-
vided dÞ0, plus ad-wave piece~with an angular depen
dence approximately equal to sin 2u or cos 2u! that depends
on r like r4/3. An unpleasant feature of our model is that it
not possible to determine unambiguously higher-order te

in r̄2/3 since terms such as ( 0
r2 sinu cosu) are zero modes of the

Laplacian operator on the left-hand side of Eq.~B1!.
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APPENDIX C

We estimate here the integral representation near the p
(x,w)5(0,0). We restrict ourselves to the case conside
here, where the coefficientf 2/350 ~the function f has a
x/uxu2 singularity!.

Our starting point is the integral representation, which c
be expressed in the form~whenx andw are small, and in the
limit l21→0!

C5ĜE
0

2p

@w/2ĥ11~x2f!ĥ2#

3 ln@w2/41~x2f!2# f ~f!df. ~C1!

~we have takenj251!. This integral is to be understood as
principal value nearf50.

The integral~C1! can be rewritten in complex notation
Introducing the variablez5 iw/21x ~with z* its complex
conjugate!, the real and imaginary parts of

C85 i E
0

2p

~z* 2f!lnuz2fu2df ~C2!

are, respectively, thef1 andf2 components of the solution
Differentiating Eq.~C2! with respect toz and then with re-
spect toz* , one obtains

]z]z* C85E
0

2p f ~f!df

~z2f!
, ~C3!

which can be evaluated by elementary methods

]z]z* C85p
Im~z!

z
. ~C3a!

Similarly, one obtains

]z*
2 C852p

Im~z!

z*
~C3b!

and

]zC85p
Im~z!

z
~z* 2z!. ~C3c!

Integrating Eqs.~C1!–~C3!, one obtains

C85p Im~z!Fz* lnS z

z* D1z* 2zG . ~C4!

Defining u5arctan(w/2x), one obtains Eq.~24!.
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